OFFSET
1,2
COMMENTS
The ratio a(n)/a(n-1) equals 1 if n is a member of A024619, equals 2 if n is prime, and is a noninteger value if n is in A025475. The noninteger ratio never seems to exceed 3/2, but appears to equal 3/2 if n is a member of A001248. The noninteger ratio conforms to the formula 1/(1 - 1/n), which has 1 for limit and only 2 as single integer solution. In terms of coordinates (x,y), the lower values are (1/(1-1/n), 2^(n-1)) for n > 2. - Eric Desbiaux, Jul 28 2013
Conjectured partial sums of A101207. - Sean A. Irvine, Jun 25 2022
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..1000
Angad Singh, Note 106.01, The number of divisors of the LCM of the first n natural numbers, The Mathematical Gazette, Vol. 106, No. 565 (2022), pp. 116-117.
FORMULA
a(n) = Product_{prime p <= n} (floor(log(n)/log(p)) + 1). - Wei Zhou, Jun 25 2011
a(n) = Product_{k>=1} (1+1/k)^pi(n^(1/k)), where pi(n) = A000720(n) (Singh, 2022). - Amiram Eldar, Aug 19 2023
EXAMPLE
n = 20: lcm(1..20) = 2*2*2*2*3*3*5*7*11*13*17*19 = 232792560 and d(232792560) = 5*3*64 = 960.
MAPLE
MATHEMATICA
Table[DivisorSigma[0, LCM @@ Range[n]], {n, 50}]
Table[Product[Floor[Log[Prime[i], n]] + 1, {i, PrimePi[n]}], {n, 100}] (* Wei Zhou, Jun 25 2011 *)
PROG
(PARI) a(n)=n+=.5; prod(e=1, log(n)\log(2), (1+1/e)^primepi(n^(1/e))) \\ Charles R Greathouse IV, Jun 06 2013
(Python)
from math import lcm
from sympy import divisor_count
from itertools import accumulate, count, islice
def agen(): yield from map(divisor_count, accumulate(count(1), lcm))
print(list(islice(agen(), 46))) # Michael S. Branicky, Jun 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 28 2000
STATUS
approved