The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123192 Triangle read by rows: row n gives the coefficients in the expansion of x^abs(3*n - 2)*p(n;x), where p(n;x) denotes the bracket polynomial for the (2,n)-torus knots. 3
 -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS From Franck Maminirina Ramaharo, Aug 11 2018: (Start) Using Kauffman's notation, the formal expression of the bracket polynomial for the (2,n)-torus knot is defined as follows: K(n;A,B,d) = A*K(n-1;A,B,d) + B*(A + B*d)^(n - 1) with K(0;A,B,d) = d.   - The polynomial in this sequence is defined as p(n;x) = K(n;x,1/x,-x^2-x^(-2)), and verifies p(n;x) = x*p(n-1;x) + (-1)^(n - 1)*x^(-3*n + 2).   - The polynomial x*K(n;1,1,x) yields (x + 1)^n + x^2 - 1 which is the bracket evaluated at the shadow diagram of the (2,n)-torus knot, see A300453.   - The polynomial sqrt(x)*K(n;-1,sqrt(x),sqrt(x)) yields (x - 1)^n + (x - 1)*(-1)^n. This is the chromatic polynomial for the n-cycle graph which is the medial graph of the (2,n)-torus knot, see A137396. The planar diagram of the (2,0)-torus knot is two non-interesecting circles. (End) REFERENCES Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 38 and p. 353. LINKS Paul Corbitt, Torus Links and the Bracket Polynomial. Louis H. Kauffman, State models and the Jones polynomial, Topology Vol. 26 (1987), 395-407. Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019. Eric Weisstein's World of Mathematics, Bracket Polynomial. Eric Weisstein's World of Mathematics, Torus Knot. Wikipedia, Torus knot. Wikipedia, Medial graph. EXAMPLE From Franck Maminirina Ramaharo, Aug 11 2018: (Start) The bracket polynomial for some value of n: p(0;x) = -x^2 - 1/x^2; p(1;x) = -x^3; p(2;x) = -x^4 - 1/x^4; p(3;x) = -x^5 - 1/x^3 + 1/x^7; p(4;x) = -x^6 - 1/x^2 + 1/x^6 - 1/x^10; p(5;x) = -x^7 - 1/x   + 1/x^5 - 1/x^9  + 1/x^13; p(6;x) = -x^8 - 1     + 1/x^4 - 1/x^8  + 1/x^12 - 1/x^16; p(7;x) = -x^9 - x     + 1/x^3 - 1/x^7  + 1/x^11 - 1/x^15 + 1/x^19; ... The triangle giving the coefficients in x^abs(3*n - 2)*p(n;x) begins:   -1, 0, 0, 0, -1    0, 0, 0, 0, -1   -1, 0, 0, 0,  0, 0, 0, 0, -1    1, 0, 0, 0, -1, 0, 0, 0,  0, 0, 0, 0, -1   -1, 0, 0, 0,  1, 0, 0, 0, -1, 0, 0, 0,  0, 0, 0, 0, -1    1, 0, 0, 0, -1, 0, 0, 0,  1, 0, 0, 0, -1, 0, 0, 0,  0, 0, 0, 0, -1 ... (End) PROG (Maxima) K(n, A, B, d) := if n = 0 then d else A*K(n - 1, A, B, d) + B*(A + B*d)^(n - 1)\$ p(n, x) := x^abs(3*n - 2)*K(n, x, 1/x, -x^(-2) - x^2)\$ t(n, k) := ratcoef(p(n, x), x, k)\$ T:[]\$ for n:0 thru 10 do T:append(T, makelist(t(n, k), k, 0, max(4, 4*n)))\$ T; /* Franck Maminirina Ramaharo, Aug 11 2018 */ CROSSREFS Cf. A029694, A051764, A137396, A300453. Sequence in context: A276791 A111900 A173860 * A120524 A014177 A014129 Adjacent sequences:  A123189 A123190 A123191 * A123193 A123194 A123195 KEYWORD tabf,sign AUTHOR Roger L. Bagula, Oct 03 2006 EXTENSIONS Partially edited by N. J. A. Sloane, May 22 2007 Edited, new name, and corrected by Franck Maminirina Ramaharo, Aug 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 16:43 EDT 2021. Contains 345402 sequences. (Running on oeis4.)