The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120524 First differences of successive meta-Fibonacci numbers A120502. 2
 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link] C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences B. Jackson and F. Ruskey, Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes, Electronic Journal of Combinatorics, 13 (2006), #R26, 13 pages. FORMULA d(n) = 0 if node n is an inner node, or 1 if node n is a leaf. G.f.: z (1 + z^4 ( (1 - z^[1]) / (1 - z^[1]) + z^5 * (1 - z^(2 * [i]))/(1 - z^[1]) ( (1 - z^[2]) / (1 - z^[2]) + z^7 * (1 - z^(2 * [2]))/(1 - z^[2]) (..., where [i] = (2^i - 1). G.f.: D(z) = z * (1 - z^3) * sum(prod(z^3 * (1 - z^(2 * [i])) / (1 - z^[i]), i=1..n), n=0..infinity), where [i] = (2^i - 1). MAPLE d := n -> if n=1 then 1 else A120502(n)-A120502(n-1) fi; CROSSREFS Cf. A120502, A120513. Sequence in context: A111900 A173860 A123192 * A014177 A014129 A121505 Adjacent sequences:  A120521 A120522 A120523 * A120525 A120526 A120527 KEYWORD nonn AUTHOR Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 08:13 EDT 2021. Contains 346340 sequences. (Running on oeis4.)