login
A121505
Hit triangle for unit circle area (Pi) approximation problem described in A121500.
1
1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
OFFSET
3,1
COMMENTS
Record for n=3,4,... only those (n, A121500(n)) pairs which have relative error E(n, A121500(n)) smaller than all errors with smaller n. This produces the table a(n,m).
The unit circle area is approximated by the arithmetic mean of the areas of an inscribed regular n-gon and a circumscribed regular m-gon.
For each row n>=3 the minimal relative error E(n,m):= ((Fin(n) + Fout(m))/2-Pi)/ Pi) appears for m= A121500(n).
The same hit triangle is obtained when one considers the minimal relative errors for the columns m>=3 and collects the sequence with decreasing errors, starting with m=3.
FORMULA
a(n,m) = 1 if m = A121500(n) and E(n,m) < min(E(k,A121500(k)), k=3..n-1), n>=4. a(3,3) = 1, else a(n,m) = 0.
EXAMPLE
[1], [0,0], [0,1,0], [0, 0, 1, 0], [0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0],...
CROSSREFS
Sequence in context: A120524 A014177 A014129 * A014289 A354030 A015297
KEYWORD
nonn,tabl,easy
AUTHOR
Wolfdieter Lang, Aug 16 2006
STATUS
approved