login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120527
First differences of successive generalized meta-Fibonacci numbers A120505.
2
1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1
OFFSET
1,1
LINKS
C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]
FORMULA
d(n) = 0 if node n is an inner node, or 1 if node n is a leaf.
g.f. z (1 + z^3 ( (1 - z^(2 * [1])) / (1 - z^[1]) + z^5 * (1 - z^(3 * [i]))/(1 - z^[1]) ( (1 - z^(2 * [2])) / (1 - z^[2]) + z^11 * (1 - z^(3 * [2]))/(1 - z^[2]) (..., where [i] = (3^i - 1) / 2.
g.f.: D(z) = z * (1 - z^2) * sum(prod(z^2 * (1 - z^(3 * [i])) / (1 - z^[i]), i=1..n), n=0..infinity), where [i] = (3^i - 1) / 2.
MAPLE
d := n -> if n=1 then 1 else A120505(n)-A120505(n-1) fi;
CROSSREFS
Sequence in context: A214293 A323096 A359379 * A188093 A190843 A287772
KEYWORD
nonn
AUTHOR
Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006
STATUS
approved