login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123194
a(n) = (n+1)*Fibonacci(n+2) + 3.
1
4, 7, 12, 23, 43, 81, 150, 275, 498, 893, 1587, 2799, 4904, 8543, 14808, 25555, 43931, 75261, 128538, 218923, 371934, 630457, 1066467, 1800603, 3034828, 5106871, 8580900, 14398415, 24129163, 40388073, 67527582, 112786499, 188195274, 313733813, 522562323
OFFSET
0,1
LINKS
FORMULA
G.f.: (4 - 5*x - 5*x^2 + 6*x^3 + 3*x^4)/((1 - x)*(1 - x - x^2)^2). - Ilya Gutkovskiy, Feb 24 2017
From Colin Barker, Feb 25 2017: (Start)
a(n) = 3 - 2^(-1-n)*((1-sqrt(5))^n*(-5+3*sqrt(5)) - (1+sqrt(5))^n*(5+3*sqrt(5)))/5*(1+n).
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5) for n>4.
(End)
MATHEMATICA
Table[(n + 1) Fibonacci[n+2] + 3, {n, 0, 40}] (* Vincenzo Librandi, Feb 25 2017 *)
LinearRecurrence[{3, -1, -3, 1, 1}, {4, 7, 12, 23, 43}, 40] (* Harvey P. Dale, Jan 12 2018 *)
PROG
(PARI) a(n) = (n+1)*fibonacci(n+2) + 3; \\ Michel Marcus, Feb 25 2017
(PARI) Vec((4 - 5*x - 5*x^2 + 6*x^3 + 3*x^4)/((1 - x)*(1 - x - x^2)^2) + O(x^50)) \\ Colin Barker, Feb 25 2017
(Magma) [(n+1)*Fibonacci(n+2) + 3: n in [0..40]]; // Vincenzo Librandi, Feb 25 2017
CROSSREFS
Cf. A023607.
Sequence in context: A010901 A187211 A023624 * A372449 A208668 A243860
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 04 2006
STATUS
approved