The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123190 Sum of the entries of the first row of the matrix M^n, where M is the 4 X 4 matrix [[ -1, 3, -3, 1 ], [ 3, -6, 3, 0 ], [ -3, 0, 3, 0 ], [ 1, 4, 1, 0 ]]. 1
 1, 0, 6, -6, 120, -504, 5268, -33960, 286872, -2089656, 16524528, -124872576, 967652400, -7394858496, 56948789280, -436704535776, 3356724764544, -25767744878592, 197948016193344, -1520029557845376, 11674792161026688, -89658816678161280, 688598927703310080 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-4,34,30,-108). FORMULA G.f.: (1 + 4*x - 28*x^2 - 12*x^3) / (1 + 4*x - 34*x^2 - 30*x^3 + 108*x^4). - Colin Barker, Dec 13 2012 a(n) = -4*a(n-1) + 34*a(n-2) + 30*a(n-3) - 108*a(n-4) for n>3. - Colin Barker, Mar 03 2017 MAPLE with(linalg): M[1]:=matrix(4, 4, [ -1, 3, -3, 1, 3, -6, 3, 0, -3, 0, 3, 0, 1, 4, 1, 0]): for n from 2 to 22 do M[n]:=multiply(M[n-1], M[1]) od: 1, seq(add(M[k][1, j], j=1..4), k=1..22); MATHEMATICA M = {{ -1, 3, -3, 1 }, { 3, -6, 3, 0 }, {-3, 0, 3, 0 }, { 1, 4, 1, 0 }}; v[1] = {1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1] a1 = Table[v[n][[1]], {n, 1, 25}] PROG (PARI) Vec((1 + 4*x - 28*x^2 - 12*x^3) / (1 + 4*x - 34*x^2 - 30*x^3 + 108*x^4) + O(x^30)) \\ Colin Barker, Mar 03 2017 CROSSREFS Sequence in context: A267139 A170915 A328186 * A244956 A239532 A165641 Adjacent sequences:  A123187 A123188 A123189 * A123191 A123192 A123193 KEYWORD sign,easy AUTHOR Roger L. Bagula, Oct 03 2006 EXTENSIONS Edited by N. J. A. Sloane, Oct 26 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 19:59 EDT 2021. Contains 345365 sequences. (Running on oeis4.)