The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A170915 Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n); a(n) = denominator(g_n). 7
 1, 1, 6, 6, 120, 120, 5040, 280, 72576, 362880, 39916800, 11975040, 1245404160, 88957440, 1307674368000, 11675664000, 71137485619200, 1067062284288000, 121645100408832000, 101370917007360000, 10218188434341888000, 5109094217170944000, 25852016738884976640000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS From Petros Hadjicostas, Oct 06 2019: (Start) The recurrence about (A(m,n): m,n >= 1) in the Formula section follows from Theorem 3 in Gingold et al. (1988); see also Gingold and Knopfmacher (1995, p. 1222). A(m=1,n) equals the n-th coefficient of the Taylor expansion of 1 + sin(x). If 1 + sin(x) = 1/Product_{n>=1} (1 + f_n * x^n) (inverse power product expansion), then Gingold and Knopfmacher (1995) and Alkauskas (2008, 2009) proved that f_n = -g_n for n odd, and Sum_{s|n} (-g_{n/s})^s/s = -Sum_{s|n} (-f_{n/s})^s/s. [We caution that different authors may use -g_n for g_n, or -f_n for f_n, or both.] We have A328191(n) = numerator(f_n) and A328186(n) = denominator(f_n). Wolfdieter Lang (see the link below) examined inverse power product expansions both for ordinary g.f.'s and for exponential g.f.'s. In all cases, we assume the g.f.'s are unital, i.e., the g.f.'s start with a constant 1. (End) LINKS Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008. Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364. H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161. H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239. W. Lang, Recurrences for the general problem, 2009. FORMULA From Petros Hadjicostas, Oct 07 2019: (Start) a(2*n+1) = A328186(2*n+1) for n >= 0. Define (A(m,n): n,m >= 1) by A(m=1,2*n+1) = (-1)^n/(2*n+1)! for n >= 0, A(m=1,2*n) = 0 for n >= 1, A(m,n) = 0 for m > n >= 1 (upper triangular), and A(m,n) = A(m-1,n) - A(m-1,m-1) * A(m,n-m+1) for n >= m >= 2. Then g_n = A(n,n). (End) EXAMPLE g_n = 1, 0, -1/6, 1/6, -19/120, 19/120, -659/5040, 37/280, -7675/72576, ... MAPLE # Calculates the fractions g_n (choose L much larger than M): PPE_sin := proc(L, M) local t1, t0, g, t2, n, t3; if L < 2.5*M then print("Choose larger value for L"); else t1 := 1 + sin(x); t0 := series(t1, x, L); g := []; t2 := t0; for n to M do t3 := coeff(t2, x, n); t2 := series(t2/(1 + t3*x^n), x, L); g := [op(g), t3]; end do; end if; [seq(g[n], n = 1 .. nops(g))]; end proc; # Calculates the denominators of g_n: h1 := map(denom, PPE_sin(100, 40)); # Petros Hadjicostas, Oct 06 2019 by modifying N. J. A. Sloane's program from A170912 and A170913. MATHEMATICA A[m_, n_] :=   A[m, n] =    Which[m == 1, (1-(-1)^n)*(-1)^Floor[(n-1)/2]/(2*n!), m > n >= 1, 0, True,     A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]]; a[n_] := Denominator[A[n, n]]; a /@ Range[1, 55] (* Petros Hadjicostas, Oct 06 2019, courtesy of Jean-François Alcover *) CROSSREFS Numerators are in A170914. Cf. A170910, A170911, A170912, A170913, A328186, A328191. Sequence in context: A085804 A012125 A267139 * A328186 A123190 A244956 Adjacent sequences:  A170912 A170913 A170914 * A170916 A170917 A170918 KEYWORD nonn,frac AUTHOR N. J. A. Sloane, Jan 30 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 17:49 EDT 2021. Contains 346428 sequences. (Running on oeis4.)