login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170912
Write cos(x) = Product_{n >= 1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).
12
-1, 1, 7, 131, 1843, 97261, 4683059, 1331727679, 568285777, 9521655609199, 175554688130609, 11334988388673161, 3457026400678609391, 6594042537777612027841, 249248595232521829462213, 268938575250382935485761673113, 3929672369519648081411955883, 4719016202742955262333630268611
OFFSET
1,3
LINKS
Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
EXAMPLE
-1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...
MAPLE
t1:=cos(x);
L:=100;
t0:=series(t1, x, L):
g:=[]; M:=40; t2:=t0:
for n from 1 to M do
t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3];
od:
g;
h:=[seq(g[2*n], n=1..nops(g)/2)];
h1:=map(numer, h);
h2:=map(denom, h);
MATHEMATICA
A[m_, n_] :=
A[m, n] =
Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Numerator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *)
CROSSREFS
Cf. A170913.
Sequence in context: A158701 A201308 A367247 * A099601 A028420 A220257
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Jan 30 2010
STATUS
approved