The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A170912 Write cos(x) = Product_{n >= 1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n). 9
 -1, 1, 7, 131, 1843, 97261, 4683059, 1331727679, 568285777, 9521655609199, 175554688130609, 11334988388673161, 3457026400678609391, 6594042537777612027841, 249248595232521829462213, 268938575250382935485761673113, 3929672369519648081411955883, 4719016202742955262333630268611 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008. Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364. H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161. H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239. W. Lang, Recurrences for the general problem. EXAMPLE -1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ... MAPLE t1:=cos(x); L:=100; t0:=series(t1, x, L): g:=[]; M:=40; t2:=t0: for n from 1 to M do t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3]; od: g; h:=[seq(g[2*n], n=1..nops(g)/2)]; h1:=map(numer, h); h2:=map(denom, h); MATHEMATICA A[m_, n_] :=   A[m, n] =    Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,     A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]]; a[n_] := Numerator[A[n, n]]; a /@ Range[1, 55] (* Petros Hadjicostas, Oct 04 2019, courtesy of Jean-François Alcover *) CROSSREFS Cf. A170913. Sequence in context: A074224 A158701 A201308 * A099601 A028420 A220257 Adjacent sequences:  A170909 A170910 A170911 * A170913 A170914 A170915 KEYWORD sign,frac AUTHOR N. J. A. Sloane, Jan 30 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 03:42 EDT 2021. Contains 347478 sequences. (Running on oeis4.)