login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Write cos(x) = Product_{n >= 1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).
12

%I #14 Oct 06 2019 02:38:28

%S -1,1,7,131,1843,97261,4683059,1331727679,568285777,9521655609199,

%T 175554688130609,11334988388673161,3457026400678609391,

%U 6594042537777612027841,249248595232521829462213,268938575250382935485761673113,3929672369519648081411955883,4719016202742955262333630268611

%N Write cos(x) = Product_{n >= 1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).

%H Giedrius Alkauskas, <a href="http://arxiv.org/abs/0801.0805">One curious proof of Fermat's little theorem</a>, arXiv:0801.0805 [math.NT], 2008.

%H Giedrius Alkauskas, <a href="https://www.jstor.org/stable/40391097">A curious proof of Fermat's little theorem</a>, Amer. Math. Monthly 116(4) (2009), 362-364.

%H H. Gingold, H. W. Gould, and Michael E. Mays, <a href="https://www.researchgate.net/publication/268023169_Power_product_expansions">Power Product Expansions</a>, Utilitas Mathematica 34 (1988), 143-161.

%H H. Gingold and A. Knopfmacher, <a href="http://dx.doi.org/10.4153/CJM-1995-062-9">Analytic properties of power product expansions</a>, Canad. J. Math. 47 (1995), 1219-1239.

%H W. Lang, <a href="/A157162/a157162.txt">Recurrences for the general problem</a>.

%e -1/2, 1/24, 7/360, 131/13440, 1843/453600, 97261/47900160, ...

%p t1:=cos(x);

%p L:=100;

%p t0:=series(t1,x,L):

%p g:=[]; M:=40; t2:=t0:

%p for n from 1 to M do

%p t3:=coeff(t2,x,n); t2:=series(t2/(1+t3*x^n),x,L); g:=[op(g),t3];

%p od:

%p g;

%p h:=[seq(g[2*n],n=1..nops(g)/2)];

%p h1:=map(numer,h);

%p h2:=map(denom,h);

%t A[m_, n_] :=

%t A[m, n] =

%t Which[m == 1, (-1)^n/(2*n)!, m > n >= 1, 0, True,

%t A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];

%t a[n_] := Numerator[A[n, n]];

%t a /@ Range[1, 55] (* _Petros Hadjicostas_, Oct 04 2019, courtesy of _Jean-François Alcover_ *)

%Y Cf. A170913.

%K sign,frac

%O 1,3

%A _N. J. A. Sloane_, Jan 30 2010