login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170917
Write sin(x)/x = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = denominator(g_n).
5
6, 120, 840, 362880, 14968800, 9340531200, 49037788800, 3201186852864000, 8485288812000, 182467650613248000, 908859963476424960000, 1424498881530396672000000, 10633661572674172032000000, 8289151869130970582384640000000, 1720739115690134518218240000000, 97858575719142221963014963200000000
OFFSET
1,1
LINKS
Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
EXAMPLE
-1/6, 1/120, 1/840, 73/362880, 353/14968800, 36499/9340531200, 24257/49037788800, ...
MAPLE
t1:=sin(x)/x;
L:=100;
t0:=series(t1, x, L):
g:=[]; M:=40; t2:=t0:
for n from 1 to M do
t3:=coeff(t2, x, n); t2:=series(t2/(1+t3*x^n), x, L); g:=[op(g), t3];
od:
g;
h:=[seq(g[2*n], n=1..nops(g)/2)];
h1:=map(numer, h);
h2:=map(denom, h); # Petros Hadjicostas, Oct 04 2019 by modifying N. J. A. Sloane's program from A170912 and A170913
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 30 2010
STATUS
approved