login
A106051
Number of divisors of the Euler number E(2n) (A000364).
1
1, 1, 2, 2, 4, 4, 16, 4, 8, 8, 12, 8, 16, 4, 128, 4, 32, 8, 64, 2, 48, 8, 64, 8, 16, 16, 128, 32, 128, 4, 192, 32, 64, 32, 64, 8, 512, 32, 32, 4, 96, 16, 64, 16, 64, 8, 64, 16, 2048, 32, 64, 8, 32, 32, 512, 32, 1024, 64, 32, 16, 96, 16, 512, 256, 2048, 8, 32
OFFSET
0,3
COMMENTS
Notice that all listed terms are powers of 2 except for the 10th, 20th and 30th. It would be interesting to know whether this pattern continues. Note: Various sources give differing values for the Euler numbers. A000364 gives {1,1,5,61,1385,50521,2702765,199360981,19391512145,...}, whereas Mathematica gives {1,0,-1,0,5,0,-61,0,1385,0,-50521,...}.
LINKS
FORMULA
a(n) = A000005(A000364(n)).
EXAMPLE
E(4) = 1385 has divisors {1,5,277,1385}, so a(4) = 4.
MAPLE
a:= n-> numtheory[tau](abs(euler(2*n))):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 03 2023
MATHEMATICA
a ={}; For[n=0, n<=33, n++, {Eu=EulerE[2*n]; L=Length[Divisors[Eu]]; a=Append[a, L]}]; a
CROSSREFS
Sequence in context: A280306 A376511 A140723 * A066781 A112869 A086117
KEYWORD
nonn
AUTHOR
John W. Layman, May 06 2005
EXTENSIONS
a(34)-a(49) from Robert G. Wilson v, May 09 2005
a(46) corrected and more terms from Sean A. Irvine, Mar 03 2023
STATUS
approved