login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106050
Column two-from-center of triangle A059317.
4
0, 0, 0, 1, 3, 13, 42, 146, 476, 1574, 5122, 16706, 54256, 176254, 571954, 1856245, 6023681, 19551939, 63476314, 206145075, 669695819, 2176401235, 7075521724, 23011145314, 74864599954, 243652588070, 793264765396, 2583532274289, 8416929889967, 27430452311513
OFFSET
0,5
COMMENTS
Number of paths in the right-half-plane from (0,0) to (n-1,2) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=3 because we have hUU, UhU and UUh. - Emeric Deutsch, Sep 03 2007
LINKS
W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
José L. Ramírez, The Pascal Rhombus and the Generalized Grand Motzkin Paths, arXiv:1511.04577 [math.CO], 2015.
FORMULA
G.f.: z^3*g^2/sqrt((1+z-z^2)(1-3z-z^2)), where g=1+zg+z^2*g+z^2*g^2=[1-z-z^2-sqrt((1+z-z^2)(1-3z--z^2))]/(2z^2). - Emeric Deutsch, Sep 03 2007
MAPLE
g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: gser:=series(z^3*g^2/sqrt((1+z-z^2)*(1-3*z-z^2)), z=0, 32): seq(coeff(gser, z, n), n=0..30); # Emeric Deutsch, Sep 03 2007
MATHEMATICA
t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1;
t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2 n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2];
t[n_, k_] /; n<0 || k<0 || k>2n = 0;
a[n_] := t[n-1, n-3];
Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Aug 07 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 28 2005
STATUS
approved