OFFSET
0,5
COMMENTS
Number of paths in the right-half-plane from (0,0) to (n-1,2) consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0). Example: a(4)=3 because we have hUU, UhU and UUh. - Emeric Deutsch, Sep 03 2007
LINKS
W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
José L. Ramírez, The Pascal Rhombus and the Generalized Grand Motzkin Paths, arXiv:1511.04577 [math.CO], 2015.
FORMULA
G.f.: z^3*g^2/sqrt((1+z-z^2)(1-3z-z^2)), where g=1+zg+z^2*g+z^2*g^2=[1-z-z^2-sqrt((1+z-z^2)(1-3z--z^2))]/(2z^2). - Emeric Deutsch, Sep 03 2007
MAPLE
g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: gser:=series(z^3*g^2/sqrt((1+z-z^2)*(1-3*z-z^2)), z=0, 32): seq(coeff(gser, z, n), n=0..30); # Emeric Deutsch, Sep 03 2007
MATHEMATICA
t[0, 0] = t[1, 0] = t[1, 1] = t[1, 2] = 1;
t[n_ /; n >= 0, k_ /; k >= 0] /; k <= 2 n := t[n, k] = t[n-1, k] + t[n-1, k-1] + t[n-1, k-2] + t[n-2, k-2];
t[n_, k_] /; n<0 || k<0 || k>2n = 0;
a[n_] := t[n-1, n-3];
Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Aug 07 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 28 2005
STATUS
approved