The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065176 Site swap sequence associated with the permutation A065174 of Z. 3
 0, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 16, 16, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 32, 32, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 16, 16, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 64, 64, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 16, 16, 2, 2, 4, 4, 2, 2, 8, 8, 2, 2, 4, 4, 2, 2, 32, 32, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Here the site swap pattern ...,2,16,2,4,2,8,2,4,2,0,2,4,2,8,2,4,2,16,2,... that spans over the Z (zero throw is at t=0) has been folded to N by picking values at t=0, t=1, t=-1, t=2, t=-2, etc. successively. This pattern is shown in the figure 7 of Buhler and Graham paper and uses infinitely many balls, with each ball at step t thrown always to constant "height" 2^A001511[abs(t)] (no balls in hands at step t=0). LINKS Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519. FORMULA G.f.: (1-x+x^2)/(1-x) + (1+x)*Sum(k>=1, 2^(k-1)*x^2^k/(1-x^2^k)). - Ralf Stephan, Apr 17 2003 MAPLE [seq(TZ2(abs(N2Z(n))), n=1..120)];  # using TZ2 from A065174 N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1), 1, 0); PROG (PARI) a(n) = if(n==1, 0, 1<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 22:36 EDT 2021. Contains 346408 sequences. (Running on oeis4.)