login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065177
Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct.
7
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 3, 1, 0, 6, 15, 12, 4, 1, 0, 9, 42, 42, 20, 5, 1, 0, 18, 107, 156, 90, 30, 6, 1, 0, 30, 294, 554, 420, 165, 42, 7, 1, 0, 56, 780, 2028, 1910, 930, 273, 56, 8, 1, 0, 99, 2128, 7350, 8820, 5155, 1806, 420, 72, 9, 1, 0, 186, 5781, 26936
OFFSET
0,8
LINKS
Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
Juggling Information Service, Site Swap FAQs
FORMULA
Row n is the inverse Euler transform of j-> n^(j-1). - Alois P. Heinz, Jun 23 2018
EXAMPLE
Upper left corner starts as:
1, 0, 0, 0, 0, ...
1, 1, 2, 3, 6, ...
1, 2, 6, 15, 42, ...
1, 3, 12, 42, 156, ...
1, 4, 20, 90, 420, ...
...
MAPLE
[seq(DistSS_table(j), j=0..119)]; DistSS_table := (n) -> DistSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2)));
with(numtheory); DistSS := proc(n, b) local d, s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*((b+1)^d - b^d); od; RETURN(s/n); end;
MATHEMATICA
trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
DistSS[n_, b_] := DivisorSum[n, MoebiusMu[n/#]*((b + 1)^# - b^#)&] /n;
a[n_] := DistSS[(((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1, (n - ((trinv[n]*(trinv[n] - 1))/2))];
Table[a[n], {n, 0, 119}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)
CROSSREFS
Row 1: A059966, row 2: A065178, row 3: A065179, row 4: A065180.
Column 1: A002378, column 2: A059270.
Main diagonal gives A306173.
Cf. also A065167. trinv given at A054425.
Sequence in context: A155161 A185937 A292086 * A064044 A213980 A349373
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Oct 19 2001
STATUS
approved