OFFSET
0,2
COMMENTS
Simple periodic site swap permutations of natural numbers.
Row n of the table (starting from n=0) gives a permutation of natural numbers corresponding to the simple, infinite, periodic site swap pattern ...nnnnn...
LINKS
Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
Juggling Information Service, Site Swap FAQs
FORMULA
Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then the n-th term of the k-th row is f(g(n)+k).
EXAMPLE
Table begins:
1 2 3 4 5 6 7 ...
2 4 1 6 3 8 5 ...
4 6 2 8 1 10 3 ...
6 8 4 10 2 12 1 ...
MAPLE
PerSS_table := (n) -> PerSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2))); PerSS := (n, c) -> Z2N(N2Z(n)+c);
N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1), 1, 0);
[seq(PerSS_table(j), j=0..119)];
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Oct 19 2001
STATUS
approved