login
A168148
Row sums of triangle in A168030.
2
1, 1, 2, 2, 3, 4, 4, 3, 6, 6, 6, 4, 6, 7, 10, 6, 11, 12, 10, 6, 8, 8, 12, 8, 12, 11, 18, 12, 13, 16, 20, 11, 22, 22, 18, 12, 14, 14, 16, 10, 14, 12, 24, 16, 16, 18, 22, 12, 22, 23, 34, 20, 25, 28, 26, 17, 30, 26, 38, 24, 26, 31, 42, 22, 43, 44, 34, 22, 28, 26, 30, 20, 26
OFFSET
0,3
LINKS
FORMULA
From G. C. Greubel, Jan 12 2023: (Start)
a(n) = Sum_{k=0..n} A168030(n, k).
a(n) = Sum_{k=0..n} (A118340(n, k) mod 2). (End)
MATHEMATICA
t[n_, k_]:= t[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[n<=2*k, t[n, n-k -1] + t[n-1, k], t[n, n-k] + t[n-1, k]]]]; (* A118340 *)
Table[Sum[Mod[t[n, k], 2], {k, 0, n}], {n, 0, 80}] (* G. C. Greubel, Jan 12 2023 *)
PROG
(SageMath)
@CachedFunction
def t(n, k): # t = A118340
if (k<0 or k>n): return 0
elif (k==0): return 1
elif (n>2*k): return t(n, n-k) + t(n-1, k)
else: return t(n, n-k-1) + t(n-1, k)
def A168148(n): return sum( t(n, k)%2 for k in range(n+1))
[A168148(n) for n in range(81)] # G. C. Greubel, Jan 12 2023
CROSSREFS
Sequence in context: A334030 A285333 A086416 * A147968 A366320 A065167
KEYWORD
nonn
AUTHOR
Philippe Deléham, Nov 19 2009
EXTENSIONS
Terms a(16) onward added by G. C. Greubel, Jan 12 2023
STATUS
approved