OFFSET
1,1
COMMENTS
Corresponds to simple periodic asynchronic site swap pattern ...222222... (holding a ball in each hand forever).
This permutation consists of just two infinite cycles.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507-519.
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)+2).
G.f.: x*(3*x^5-3*x^4+4*x^3-8*x^2+2*x+4) / ((x-1)^2*(x+1)). - Colin Barker, Feb 18 2013
a(n) = 4*(-1)^n+n for n>3. a(n) = a(n-1)+a(n-2)-a(n-3) for n>6. - Colin Barker, Mar 07 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 3/2. - Amiram Eldar, Aug 08 2023
MATHEMATICA
CoefficientList[Series[(3 x^5 - 3 x^4 + 4 x^3 - 8 x^2 + 2 x + 4)/((x - 1)^2 (x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 08 2014 *)
LinearRecurrence[{1, 1, -1}, {4, 6, 2, 8, 1, 10}, 80] (* Harvey P. Dale, May 09 2018 *)
PROG
(PARI) Vec(x*(3*x^5-3*x^4+4*x^3-8*x^2+2*x+4)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Mar 07 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Oct 19 2001
STATUS
approved