Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 08 2023 03:21:41
%S 4,6,2,8,1,10,3,12,5,14,7,16,9,18,11,20,13,22,15,24,17,26,19,28,21,30,
%T 23,32,25,34,27,36,29,38,31,40,33,42,35,44,37,46,39,48,41,50,43,52,45,
%U 54,47,56,49,58,51,60,53,62,55,64,57,66,59,68,61,70,63,72,65,74,67,76
%N Permutation t->t+2 of Z, folded to N.
%C Corresponds to simple periodic asynchronic site swap pattern ...222222... (holding a ball in each hand forever).
%C This permutation consists of just two infinite cycles.
%H Vincenzo Librandi, <a href="/A065165/b065165.txt">Table of n, a(n) for n = 1..1000</a>
%H Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507-519.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>.
%F Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)+2).
%F G.f.: x*(3*x^5-3*x^4+4*x^3-8*x^2+2*x+4) / ((x-1)^2*(x+1)). - _Colin Barker_, Feb 18 2013
%F a(n) = 4*(-1)^n+n for n>3. a(n) = a(n-1)+a(n-2)-a(n-3) for n>6. - _Colin Barker_, Mar 07 2014
%F Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 3/2. - _Amiram Eldar_, Aug 08 2023
%t CoefficientList[Series[(3 x^5 - 3 x^4 + 4 x^3 - 8 x^2 + 2 x + 4)/((x - 1)^2 (x + 1)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Mar 08 2014 *)
%t LinearRecurrence[{1,1,-1},{4,6,2,8,1,10},80] (* _Harvey P. Dale_, May 09 2018 *)
%o (PARI) Vec(x*(3*x^5-3*x^4+4*x^3-8*x^2+2*x+4)/((x-1)^2*(x+1)) + O(x^100)) \\ _Colin Barker_, Mar 07 2014
%Y Row 2 of A065167. Inverse permutation: A065169.
%K nonn,easy
%O 1,1
%A _Antti Karttunen_, Oct 19 2001