login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185937
Riordan array (A000045(x)^m, x*A000108(x)), m = 1.
3
0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 3, 1, 0, 5, 12, 9, 4, 1, 0, 8, 31, 26, 14, 5, 1, 0, 13, 85, 77, 46, 20, 6, 1, 0, 21, 248, 235, 150, 73, 27, 7, 1, 0, 34, 762, 741, 493, 258, 108, 35, 8, 1, 0, 55, 2440, 2406, 1644, 903, 410, 152, 44, 9, 1, 0
OFFSET
0,7
COMMENTS
Essentially A139375 with zero diagonal added. - Ralf Stephan, Jan 01 2014
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties , arXiv:1103.2582 [math.CO], 2013.
FORMULA
For m=1: R(n,k,m) = k*Sum_{i=0..n-k} (Sum_{j=ceiling((i-m)/2)..i-m} binomial(j, i-m-j) * binomial(m+j-1, m-1)) * binomial(2*(n-i)-k-1, n-i-1)/(n-i) if k > 0; R(n,0,m) = Sum_{j=ceiling((n-m)/2)..n-m} binomial(j, n-m-j) * binomial(m+j-1, m-1).
EXAMPLE
Array begins
0;
1, 0;
1, 1, 0;
2, 2, 1, 0;
3, 5, 3, 1, 0;
5, 12, 9, 4, 1, 0;
8, 31, 26, 14, 5, 1, 0;
13, 85, 77, 46, 20, 6, 1, 0;
MATHEMATICA
r[n_, k_, m_] := k*Sum[ Sum[ Binomial[j, i-m-j]*Binomial[m+j-1, m-1], {j, Ceiling[(i-m)/2], i-m}] * Binomial[2*(n-i)-k-1, n-i-1]/(n-i), {i, 0, n-k}]; r[n_, 0, m_] := Sum[ Binomial[j, n-m-j]*Binomial[m+j-1, m-1], {j, Ceiling[(n-m)/2], n-m}]; Table[r[n, k, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 14 2013, after Vladimir Kruchinin *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Feb 06 2011
STATUS
approved