login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185939
a(n) = 9*n^2 - 6*n + 2.
1
5, 26, 65, 122, 197, 290, 401, 530, 677, 842, 1025, 1226, 1445, 1682, 1937, 2210, 2501, 2810, 3137, 3482, 3845, 4226, 4625, 5042, 5477, 5930, 6401, 6890, 7397, 7922, 8465, 9026, 9605, 10202, 10817, 11450
OFFSET
1,1
COMMENTS
Group the set of natural numbers in set of 3 (1, 2, 3; 4, 5, 6; 7, 8, 9; ...) In each group, multiply the first two numbers and then add the third number to the result to get the corresponding entry in our sequence.
FORMULA
G.f. -x*(x+5)*(2*x+1) / (x-1)^3 . - Alexander R. Povolotsky, Feb 06 2011
a(n) = a(n-1) + 18*n - 15, a(1) = 5. - Vincenzo Librandi, Feb 07 2011
a(n) = (2*n-1)^2 + (2*n)^2 + (n-1)^2. - Bruno Berselli, Feb 06 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Feb 25 2017
E.g.f.: (9*x^2 + 3*x + 2)*exp(x) - 2. - G. C. Greubel, Jul 23 2017
MATHEMATICA
CoefficientList[Series[-x*(x + 5)*(2*x + 1)/(x - 1)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {5, 26, 65}, 50] (* G. C. Greubel, Feb 25 2017 *)
Table[9n^2-6n+2, {n, 40}] (* or *) #[[1]]#[[2]]+#[[3]]&/@Partition[Range[111], 3] (* Harvey P. Dale, Apr 08 2022 *)
PROG
(PARI) x='x+O('x^50); Vec(-x*(x+5)*(2*x+1)/(x-1)^3) \\ G. C. Greubel, Feb 25 2017
CROSSREFS
Sequence in context: A273701 A273709 A139273 * A273419 A273447 A273406
KEYWORD
nonn,easy
AUTHOR
Amir H. Farrahi, Feb 06 2011
STATUS
approved