The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185939 a(n) = 9*n^2 - 6*n + 2. 1
 5, 26, 65, 122, 197, 290, 401, 530, 677, 842, 1025, 1226, 1445, 1682, 1937, 2210, 2501, 2810, 3137, 3482, 3845, 4226, 4625, 5042, 5477, 5930, 6401, 6890, 7397, 7922, 8465, 9026, 9605, 10202, 10817, 11450 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Group the set of natural numbers in set of 3 (1, 2, 3; 4, 5, 6; 7, 8, 9; ...) In each group, multiply the first two numbers and then add the third number to the result to get the corresponding entry in our sequence. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f. -x*(x+5)*(2*x+1) / (x-1)^3 . - Alexander R. Povolotsky, Feb 06 2011 a(n) = a(n-1) + 18*n - 15, a(1) = 5. - Vincenzo Librandi, Feb 07 2011 a(n) = (2*n-1)^2 + (2*n)^2 + (n-1)^2. - Bruno Berselli, Feb 06 2012 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - G. C. Greubel, Feb 25 2017 E.g.f.: (9*x^2 + 3*x + 2)*exp(x) - 2. - G. C. Greubel, Jul 23 2017 MATHEMATICA CoefficientList[Series[-x*(x + 5)*(2*x + 1)/(x - 1)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {5, 26, 65}, 50] (* G. C. Greubel, Feb 25 2017 *) PROG (PARI) x='x+O('x^50); Vec(-x*(x+5)*(2*x+1)/(x-1)^3) \\ G. C. Greubel, Feb 25 2017 CROSSREFS Sequence in context: A273701 A273709 A139273 * A273419 A273447 A273406 Adjacent sequences:  A185936 A185937 A185938 * A185940 A185941 A185942 KEYWORD nonn,easy AUTHOR Amir H. Farrahi, Feb 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 26 08:42 EDT 2021. Contains 346294 sequences. (Running on oeis4.)