login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 9*n^2 - 6*n + 2.
1

%I #29 Apr 08 2022 18:05:07

%S 5,26,65,122,197,290,401,530,677,842,1025,1226,1445,1682,1937,2210,

%T 2501,2810,3137,3482,3845,4226,4625,5042,5477,5930,6401,6890,7397,

%U 7922,8465,9026,9605,10202,10817,11450

%N a(n) = 9*n^2 - 6*n + 2.

%C Group the set of natural numbers in set of 3 (1, 2, 3; 4, 5, 6; 7, 8, 9; ...) In each group, multiply the first two numbers and then add the third number to the result to get the corresponding entry in our sequence.

%H G. C. Greubel, <a href="/A185939/b185939.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f. -x*(x+5)*(2*x+1) / (x-1)^3 . - _Alexander R. Povolotsky_, Feb 06 2011

%F a(n) = a(n-1) + 18*n - 15, a(1) = 5. - _Vincenzo Librandi_, Feb 07 2011

%F a(n) = (2*n-1)^2 + (2*n)^2 + (n-1)^2. - _Bruno Berselli_, Feb 06 2012

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _G. C. Greubel_, Feb 25 2017

%F E.g.f.: (9*x^2 + 3*x + 2)*exp(x) - 2. - _G. C. Greubel_, Jul 23 2017

%t CoefficientList[Series[-x*(x + 5)*(2*x + 1)/(x - 1)^3, {x,0,50}], x] (* or *) LinearRecurrence[{3, -3, 1}, {5, 26, 65}, 50] (* _G. C. Greubel_, Feb 25 2017 *)

%t Table[9n^2-6n+2,{n,40}] (* or *) #[[1]]#[[2]]+#[[3]]&/@Partition[Range[111],3] (* _Harvey P. Dale_, Apr 08 2022 *)

%o (PARI) x='x+O('x^50); Vec(-x*(x+5)*(2*x+1)/(x-1)^3) \\ _G. C. Greubel_, Feb 25 2017

%K nonn,easy

%O 1,1

%A _Amir H. Farrahi_, Feb 06 2011