login
A273709
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 873", based on the 5-celled von Neumann neighborhood.
1
1, 5, 26, 59, 127, 232, 376, 569, 846, 1175, 1584, 2017, 2585, 3210, 3970, 4787, 5800, 6905, 8182, 9551, 11104, 12765, 14606, 16599, 18804, 21101, 23690, 26395, 29420, 32545, 35926, 39479, 43360, 47465, 51854, 56447, 61380, 66433, 71818, 77499, 83508, 89765
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=873; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A273707.
Sequence in context: A273301 A042883 A273701 * A139273 A185939 A273419
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 28 2016
STATUS
approved