login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A273707
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 873", based on the 5-celled von Neumann neighborhood.
4
1, 4, 21, 33, 68, 105, 144, 193, 277, 329, 409, 433, 568, 625, 760, 817, 1013, 1105, 1277, 1369, 1553, 1661, 1841, 1993, 2205, 2297, 2589, 2705, 3025, 3125, 3381, 3553, 3881, 4105, 4389, 4593, 4933, 5053, 5385, 5681, 6009, 6257, 6585, 6889, 7245, 7573, 7841
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=873; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A273299 A306285 A273699 * A364679 A204557 A161444
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 28 2016
STATUS
approved