login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306285
Numbers congruent to 4 or 21 mod 26.
3
4, 21, 30, 47, 56, 73, 82, 99, 108, 125, 134, 151, 160, 177, 186, 203, 212, 229, 238, 255, 264, 281, 290, 307, 316, 333, 342, 359, 368, 385, 394, 411, 420, 437, 446, 463, 472, 489, 498, 515, 524, 541, 550, 567, 576, 593, 602, 619, 628, 645, 654, 671, 680, 697, 706, 723, 732, 749, 758, 775, 784, 801, 810, 827, 836, 853, 862
OFFSET
1,1
COMMENTS
A007310(a(n)+1) is always a multiple of 13.
a(n) mod 6 follows the following pattern: 4,3,0,5,2,1,4,3,0,5,2,1 and so on.
a(n) mod 4 = A010873(n)
A020639(A007310(a(n)+1) = 5 when n is congruent to 2 or 9 (mod 10) (n is a term in A273669). It equals 7 when n is congruent to 3 or 12 (mod 14) but not congruent to 2 or 9 (mod 10). It equals 11 when n is congruent to 4 or 19 (mod 22) but not congruent to 2 or 9 (mod 10) and not congruent to 3 or 12 (mod 14). Otherwise, it is 13.
FORMULA
a(n) = 13*n - A010720(n+1).
From Colin Barker, Feb 08 2019: (Start)
G.f.: x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)).
a(n) = 13*n - 5 for n even.
a(n) = 13*n - 9 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
E.g.f.: 5 + (13*x - 7)*exp(x) + 2*exp(-x). - David Lovler, Sep 09 2022
MAPLE
seq(seq(26*i+j, j=[4, 21]), i=0..200);
MATHEMATICA
Select[Range[200], MemberQ[{4, 21}, Mod[#, 26]] &]
PROG
(PARI) for(n=1, 1000, if((n%26==4) || (n%26==21), print1(n, ", ")))
(PARI) Vec(x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 08 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Davis Smith, Feb 03 2019
STATUS
approved