login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers congruent to 4 or 21 mod 26.
3

%I #33 Sep 09 2022 22:26:09

%S 4,21,30,47,56,73,82,99,108,125,134,151,160,177,186,203,212,229,238,

%T 255,264,281,290,307,316,333,342,359,368,385,394,411,420,437,446,463,

%U 472,489,498,515,524,541,550,567,576,593,602,619,628,645,654,671,680,697,706,723,732,749,758,775,784,801,810,827,836,853,862

%N Numbers congruent to 4 or 21 mod 26.

%C A007310(a(n)+1) is always a multiple of 13.

%C a(n) mod 6 follows the following pattern: 4,3,0,5,2,1,4,3,0,5,2,1 and so on.

%C a(n) mod 4 = A010873(n)

%C A020639(A007310(a(n)+1) = 5 when n is congruent to 2 or 9 (mod 10) (n is a term in A273669). It equals 7 when n is congruent to 3 or 12 (mod 14) but not congruent to 2 or 9 (mod 10). It equals 11 when n is congruent to 4 or 19 (mod 22) but not congruent to 2 or 9 (mod 10) and not congruent to 3 or 12 (mod 14). Otherwise, it is 13.

%H Davis Smith, <a href="/A306285/b306285.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 13*n - A010720(n+1).

%F From _Colin Barker_, Feb 08 2019: (Start)

%F G.f.: x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)).

%F a(n) = 13*n - 5 for n even.

%F a(n) = 13*n - 9 for n odd.

%F a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)

%F E.g.f.: 5 + (13*x - 7)*exp(x) + 2*exp(-x). - _David Lovler_, Sep 09 2022

%p seq(seq(26*i+j, j=[4, 21]), i=0..200);

%t Select[Range[200], MemberQ[{4, 21}, Mod[#, 26]] &]

%o (PARI) for(n=1, 1000, if((n%26==4) || (n%26==21), print1(n, ", ")))

%o (PARI) Vec(x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ _Colin Barker_, Feb 08 2019

%Y Cf. A007310, A010720, A020639, A010873, A273669.

%K nonn,easy

%O 1,1

%A _Davis Smith_, Feb 03 2019