Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Oct 13 2017 03:32:29
%S 0,1,0,1,1,0,2,2,1,0,3,5,3,1,0,5,12,9,4,1,0,8,31,26,14,5,1,0,13,85,77,
%T 46,20,6,1,0,21,248,235,150,73,27,7,1,0,34,762,741,493,258,108,35,8,1,
%U 0,55,2440,2406,1644,903,410,152,44,9,1,0
%N Riordan array (A000045(x)^m, x*A000108(x)), m = 1.
%C Essentially A139375 with zero diagonal added. - _Ralf Stephan_, Jan 01 2014
%H G. C. Greubel, <a href="/A185937/b185937.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H Vladimir Kruchinin, D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties </a>, arXiv:1103.2582 [math.CO], 2013.
%F For m=1: R(n,k,m) = k*Sum_{i=0..n-k} (Sum_{j=ceiling((i-m)/2)..i-m} binomial(j, i-m-j) * binomial(m+j-1, m-1)) * binomial(2*(n-i)-k-1, n-i-1)/(n-i) if k > 0; R(n,0,m) = Sum_{j=ceiling((n-m)/2)..n-m} binomial(j, n-m-j) * binomial(m+j-1, m-1).
%e Array begins
%e 0;
%e 1, 0;
%e 1, 1, 0;
%e 2, 2, 1, 0;
%e 3, 5, 3, 1, 0;
%e 5, 12, 9, 4, 1, 0;
%e 8, 31, 26, 14, 5, 1, 0;
%e 13, 85, 77, 46, 20, 6, 1, 0;
%t r[n_, k_, m_] := k*Sum[ Sum[ Binomial[j, i-m-j]*Binomial[m+j-1, m-1], {j, Ceiling[(i-m)/2], i-m}] * Binomial[2*(n-i)-k-1, n-i-1]/(n-i), {i, 0, n-k}]; r[n_, 0, m_] := Sum[ Binomial[j, n-m-j]*Binomial[m+j-1, m-1], {j, Ceiling[(n-m)/2], n-m}]; Table[r[n, k, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 14 2013, after _Vladimir Kruchinin_ *)
%Y Cf. A000045, A000108, A139375.
%K nonn,tabl
%O 0,7
%A _Vladimir Kruchinin_, Feb 06 2011