Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 23 2018 16:15:48
%S 1,0,1,0,1,1,0,2,2,1,0,3,6,3,1,0,6,15,12,4,1,0,9,42,42,20,5,1,0,18,
%T 107,156,90,30,6,1,0,30,294,554,420,165,42,7,1,0,56,780,2028,1910,930,
%U 273,56,8,1,0,99,2128,7350,8820,5155,1806,420,72,9,1,0,186,5781,26936
%N Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct.
%H G. C. Greubel, <a href="/A065177/b065177.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
%H Juggling Information Service, <a href="http://www.juggling.org/bin/mfs/JIS/help/siteswap/">Site Swap FAQs</a>
%F Row n is the inverse Euler transform of j-> n^(j-1). - _Alois P. Heinz_, Jun 23 2018
%e Upper left corner starts as:
%e 1, 0, 0, 0, 0, ...
%e 1, 1, 2, 3, 6, ...
%e 1, 2, 6, 15, 42, ...
%e 1, 3, 12, 42, 156, ...
%e 1, 4, 20, 90, 420, ...
%e ...
%p [seq(DistSS_table(j),j=0..119)]; DistSS_table := (n) -> DistSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2)));
%p with(numtheory); DistSS := proc(n,b) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*((b+1)^d - b^d); od; RETURN(s/n); end;
%t trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
%t DistSS[n_, b_] := DivisorSum[n, MoebiusMu[n/#]*((b + 1)^# - b^#)&] /n;
%t a[n_] := DistSS[(((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1, (n - ((trinv[n]*(trinv[n] - 1))/2))];
%t Table[a[n], {n, 0, 119}] (* _Jean-François Alcover_, Mar 06 2016, adapted from Maple *)
%Y Row 1: A059966, row 2: A065178, row 3: A065179, row 4: A065180.
%Y Column 1: A002378, column 2: A059270.
%Y Main diagonal gives A306173.
%Y Cf. also A065167. trinv given at A054425.
%K nonn,tabl
%O 0,8
%A _Antti Karttunen_, Oct 19 2001