login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345735
A prime-generating quasipolynomial: a(n) = 6*floor(n^2/4) + 17.
0
17, 17, 23, 29, 41, 53, 71, 89, 113, 137, 167, 197, 233, 269, 311, 353, 401, 449, 503, 557, 617, 677, 743, 809, 881, 953, 1031, 1109, 1193, 1277, 1367, 1457, 1553, 1649, 1751, 1853, 1961, 2069, 2183, 2297, 2417, 2537, 2663, 2789, 2921, 3053, 3191, 3329, 3473, 3617
OFFSET
0,1
COMMENTS
Fontebasso only claims that the terms are prime from 0 to 22, but in fact a(23)..a(30) are all prime as well. The first composite term is a(31) = 1457 = 31*47.
LINKS
FORMULA
a(n) = A319127(n+1) + 17 = 6*A002620(n) + 17. - Omar E. Pol, Jul 12 2021
G.f.: (17*x^3-11*x^2-17*x+17)/((x+1)*(1-x)^3). - Alois P. Heinz, Jul 12 2021
E.g.f.: ((34 + 3*x + 3*x^2)*cosh(x) + (31 + 3*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, Jul 13 2021
PROG
(PARI) a(n)=n^2\4*6+17
CROSSREFS
Sequence in context: A216436 A060360 A081702 * A238235 A333152 A040273
KEYWORD
nonn,easy
AUTHOR
STATUS
approved