login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345734
Number of planar vertically indecomposable distributive lattices with n nodes.
2
1, 1, 0, 1, 0, 1, 0, 2, 1, 4, 2, 9, 6, 21, 18, 48, 50, 114, 135, 277, 358, 681, 935, 1693, 2425, 4235, 6258, 10643, 16085, 26852, 41226, 67921, 105456, 172125, 269375, 436785, 687409, 1109411, 1752966, 2819711, 4468025, 7170045, 11384240, 18238260, 28999047
OFFSET
1,8
PROG
(PARI) \\ S is symmetric only, V counts reflections separately.
S(n)={my(M=matrix(n, sqrtint(n)), v=vector(n)); for(n=1, n, my(s=0); for(k=2, sqrtint(n), s += (k^2==n) + sum(j=2, k-1, v[n-k^2+j^2] - M[n-k^2+j^2, j]); M[n, k]=s); v[n]=s); v}
V(n)={my(M=matrix(n, n\2), v=vector(n)); for(n=1, n, my(s=0); for(k=2, n\2, s += (2*k==n) + sum(j=2, min(k, n-2*k), v[n+j-2*k] - M[n+j-2*k, j-1]); M[n, k]=s); v[n]=s); v}
seq(n)={(S(n)+V(n))/2 + vector(n, i, i<=2)} \\ Andrew Howroyd, Jan 24 2023
CROSSREFS
Sequence in context: A344613 A106489 A132280 * A059970 A326889 A309303
KEYWORD
nonn
AUTHOR
Bianca Newell, Jun 25 2021
EXTENSIONS
Terms a(23) and beyond from Andrew Howroyd, Jan 24 2023
STATUS
approved