login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309303
Expansion of g.f. (sqrt(x+1) - sqrt(1-3*x))/(2*(x+1)^(3/2)).
3
0, 1, -1, 2, -1, 4, 2, 13, 23, 68, 164, 439, 1146, 3067, 8231, 22306, 60791, 166684, 459308, 1271479, 3534116, 9859573, 27598757, 77490472, 218183522, 615902899, 1742738477, 4942022648, 14043034703, 39979680748, 114020882010, 325721340061
OFFSET
0,4
COMMENTS
(-1)^a(n) = (-1)^A010060(n) = A106400(n) (Thue-Morse sequence).
a(n) + a(n+1) = A005043(n) = (-1)^n * hypergeom([-n, 1/2], [2], 4) (Motzkin sums).
LINKS
Eric Weisstein's World of Mathematics, Thue-Morse sequence.
FORMULA
a(n) = (-1)^n/2 + 3^(n+3/2)/2^(n+4) * (2*n-3)!!/n! * hypergeom([3/2, 3/2], [3/2 - n], 1/4).
D-finite with recurrence: n*a(n) = (n-4)*a(n-1) + (n-2)*(5*a(n-2) + 3*a(n-3)).
a(n) ~ c * 3^n / n^(3/2), where c = 3^(3/2) / (32*sqrt(Pi)) = 0.09161297...
MAPLE
f:= gfun:-rectoproc({n*a(n) = (n-4)*a(n-1) + (n-2)*(5*a(n-2) + 3*a(n-3)), a(0)=0, a(1)=1, a(2)=-1}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Jul 23 2019
MATHEMATICA
Table[(-1)^n/2 + 3^(n + 3/2)/2^(n + 4) (2 n - 3)!!/n! Hypergeometric2F1[3/2, 3/2, 3/2 - n, 1/4], {n, 0, 31}]
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved