login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258090
Expansion of q^(-5/6) * (eta(q) * eta(q^6)^2 / eta(q^3))^2 in powers of q.
2
1, -2, -1, 4, -3, 0, 3, 0, 1, -2, -2, -4, 0, 2, 3, -4, 9, 6, -9, 0, -6, 2, 3, 4, -7, 8, 0, -12, -3, -6, 6, 0, 9, 0, 8, 4, 2, -6, -5, 8, -7, -10, -1, 4, 5, 2, -13, 0, 9, -8, -2, 12, -3, 4, 0, -4, -16, 6, -1, 12, 10, 0, 6, 0, 1, -8, 15, -12, 0, -6, 1, -16, -16
OFFSET
0,2
LINKS
FORMULA
Euler transform of period 6 sequence [ -2, -2, 0, -2, -2, -4, ...].
G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(3*k))^2 * (1 + x^(3*k))^4.
-2 * a(n) = A030188(3*n + 2).
EXAMPLE
G.f. = 1 - 2*x - x^2 + 4*x^3 - 3*x^4 + 3*x^6 + x^8 - 2*x^9 - 2*x^10 + ...
G.f. = q^5 - 2*q^11 - q^17 + 4*q^23 - 3*q^29 + 3*q^41 + q^53 - 2*q^59 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^6]^2 / QPochhammer[ x^3])^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^2 / eta(x^3 + A))^2, n))};
(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 6*n + 5; A = factor(n); -1/2 * prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, (-1)^e, a0 = 1; a1 = y = -sum( x=0, p-1, kronecker( x^3 - x^2 - 4*x + 4, p)); for( i=2, e, x = y*a1 - p*a0; a0 = a1; a1 = x); a1)))};
(PARI) q='q+O('q^99); Vec((eta(q)*eta(q^6)^2/eta(q^3))^2) \\ Altug Alkan, Aug 02 2018
CROSSREFS
Cf. A030188.
Sequence in context: A309303 A245471 A352548 * A112157 A265624 A332332
KEYWORD
sign
AUTHOR
Michael Somos, May 19 2015
STATUS
approved