login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258092
Expansion of f(x, x^2) / psi(x)^3 in powers of x where psi(), f(, ) are Ramanujan theta functions.
2
1, -2, 4, -10, 20, -36, 64, -112, 189, -308, 492, -778, 1210, -1844, 2776, -4144, 6114, -8914, 12884, -18484, 26302, -37124, 52040, -72512, 100415, -138196, 189160, -257648, 349184, -470932, 632312, -845472, 1125853, -1493222, 1973060, -2597892, 3408754
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/3) * eta(q)^2 * eta(q^3)^2 / (eta(q^2)^5 * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [-2, 3, -4, 3, -2, 2, ...].
G.f.: Product_{k>0} (1 - x^(3*k)) / ((1 + x^(3*k)) * (1 + x^k)^2 * (1 - x^(2*k))^3).
a(n) = A258093(3*n - 1).
EXAMPLE
G.f. = 1 - 2*x + 4*x^2 - 10*x^3 + 20*x^4 - 36*x^5 + 64*x^6 - 112*x^7 + ...
G.f. = 1/q - 2*q^2 + 4*q^5 - 10*q^8 + 20*q^11 - 36*q^14 + 64*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 QPochhammer[ x^3]^2 / ( QPochhammer[ x^2]^5 QPochhammer[ x^6]), {x, 0, n}]; (* Michael Somos, May 25 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^3 + A)^2 / (eta(x^2 + A)^5 * eta(x^6 + A)), n))};
CROSSREFS
Cf. A258093.
Sequence in context: A174175 A127392 A236001 * A263993 A189585 A239346
KEYWORD
sign
AUTHOR
Michael Somos, May 19 2015
STATUS
approved