OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x^3) / (phi(-x) * f(-x^4)^2) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(1/3) * eta(q^2) * eta(q^6)^5 / (eta(q)^2 * eta(q^3)^2 * eta(q^4)^2 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 2, 1, 4, 3, 2, -2, 2, 3, 4, 1, 2, 2, ...].
a(n) = A133637(3*n - 1).
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 64*x^6 + 112*x^7 + ...
G.f. = 1/q + 2*q^2 + 4*q^5 + 10*q^8 + 20*q^11 + 36*q^14 + 64*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3] / (EllipticTheta[ 4, 0, x] QPochhammer[ x^4]^2), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^5 / (eta(x + A)^2 * eta(x^3 + A)^2 * eta(x^4 + A)^2 * eta(x^12 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 31 2015
STATUS
approved