login
A263993
Expansion of f(-x, x^2) / f(-x, -x^3)^3 in powers of x where f(, ) is Ramanujan's general theta function.
2
1, 2, 4, 10, 20, 36, 64, 112, 189, 308, 492, 778, 1210, 1844, 2776, 4144, 6114, 8914, 12884, 18484, 26302, 37124, 52040, 72512, 100415, 138196, 189160, 257648, 349184, 470932, 632312, 845472, 1125853, 1493222, 1973060, 2597892, 3408754, 4457600, 5810544
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x^3) / (phi(-x) * f(-x^4)^2) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(1/3) * eta(q^2) * eta(q^6)^5 / (eta(q)^2 * eta(q^3)^2 * eta(q^4)^2 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 2, 1, 4, 3, 2, -2, 2, 3, 4, 1, 2, 2, ...].
a(n) = A133637(3*n - 1).
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 64*x^6 + 112*x^7 + ...
G.f. = 1/q + 2*q^2 + 4*q^5 + 10*q^8 + 20*q^11 + 36*q^14 + 64*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3] / (EllipticTheta[ 4, 0, x] QPochhammer[ x^4]^2), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^5 / (eta(x + A)^2 * eta(x^3 + A)^2 * eta(x^4 + A)^2 * eta(x^12 + A)^2), n))};
CROSSREFS
Cf. A133637.
Sequence in context: A127392 A236001 A258092 * A189585 A239346 A004647
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 31 2015
STATUS
approved