login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263993
Expansion of f(-x, x^2) / f(-x, -x^3)^3 in powers of x where f(, ) is Ramanujan's general theta function.
2
1, 2, 4, 10, 20, 36, 64, 112, 189, 308, 492, 778, 1210, 1844, 2776, 4144, 6114, 8914, 12884, 18484, 26302, 37124, 52040, 72512, 100415, 138196, 189160, 257648, 349184, 470932, 632312, 845472, 1125853, 1493222, 1973060, 2597892, 3408754, 4457600, 5810544
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x^3) / (phi(-x) * f(-x^4)^2) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(1/3) * eta(q^2) * eta(q^6)^5 / (eta(q)^2 * eta(q^3)^2 * eta(q^4)^2 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 2, 1, 4, 3, 2, -2, 2, 3, 4, 1, 2, 2, ...].
a(n) = A133637(3*n - 1).
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 64*x^6 + 112*x^7 + ...
G.f. = 1/q + 2*q^2 + 4*q^5 + 10*q^8 + 20*q^11 + 36*q^14 + 64*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3] / (EllipticTheta[ 4, 0, x] QPochhammer[ x^4]^2), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^5 / (eta(x + A)^2 * eta(x^3 + A)^2 * eta(x^4 + A)^2 * eta(x^12 + A)^2), n))};
CROSSREFS
Cf. A133637.
Sequence in context: A127392 A236001 A258092 * A189585 A239346 A004647
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 31 2015
STATUS
approved