login
A263990
Nonsquare numbers k such that k and k+1 are semiprimes.
7
14, 21, 33, 34, 38, 57, 85, 86, 93, 94, 118, 122, 133, 141, 142, 145, 158, 177, 201, 202, 205, 213, 214, 217, 218, 253, 298, 301, 302, 326, 334, 381, 393, 394, 445, 446, 453, 481, 501, 514, 526, 537, 542, 553, 565, 622, 633, 634, 694, 697, 698, 706, 717, 745, 766, 778, 793, 802, 817, 842, 865, 878
OFFSET
1,1
COMMENTS
If k and k+1 are semiprimes then k+1 is always nonsquare while k can be a square (see A263951). The sequence gives the nonsquare terms of A070552. Each of the numbers k and k+1 is a product of two distinct primes.
Numbers that are terms in A070552 but not in A263951.
The subsequence of triples of consecutive squarefree semiprimes is A039833. - R. J. Mathar, Aug 13 2019
LINKS
MATHEMATICA
Select[Range[1000], ! IntegerQ[Sqrt[#]] && 2 == PrimeOmega[#] == PrimeOmega[# + 1] &]
PROG
(PARI) is(n)=if(n%2, isprime((n+1)/2) && bigomega(n)==2 && !isprimepower(n), isprime(n/2) && bigomega(n+1)==2) \\ Charles R Greathouse IV, Apr 25 2016
CROSSREFS
Subsequence of A070552, A086263.
Sequence in context: A120141 A240593 A121495 * A253810 A084995 A100466
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 31 2015
STATUS
approved