login
A309301
(1/9) times the sum of the elements of all subsets of [n] whose sum is divisible by nine.
2
0, 0, 0, 0, 1, 3, 9, 23, 60, 150, 354, 843, 1983, 4608, 10638, 24318, 55043, 123862, 276868, 614996, 1359446, 2990726, 6550528, 14292132, 31069860, 67316446, 145403700, 313177200, 672746880, 1441600632, 3082042512, 6575014400, 13998418584, 29746639512
OFFSET
0,6
LINKS
Index entries for linear recurrences with constant coefficients, signature (6, -12, 14, -36, 72, -60, 72, -144, 110, -84, 168, -148, 216, -432, 360, -432, 864, -636, 360, -720, 552, -432, 864, -720, 864, -1728, 1256, -624, 1248, -880, 288, -576, 480, -576, 1152, -832, 384, -768, 512).
FORMULA
G.f.: -x^4*(64*x^33-160*x^30+32*x^29+80*x^28+216*x^27+96*x^26 -312*x^25 -160*x^24 -200*x^23 +376*x^22+40*x^21 -4*x^20+164*x^19-48*x^18 +60*x^17 -516*x^16 +114*x^15+4*x^14+340*x^13-79*x^12-30*x^11-78*x^10 +4*x^9 +45*x^8 -33*x^7+20*x^6-24*x^5+24*x^4-9*x^3+3*x^2 -3*x+1) / ((2*x-1)^3 *(2*x^3-1)^3 *(2*x^9-1)^3).
CROSSREFS
Column k=9 of A309280.
Sequence in context: A077847 A027058 A146818 * A323798 A180488 A318860
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jul 21 2019
STATUS
approved