The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255681 Decimal expansion of Sum_{k>=1} zeta(2*k+1)/((2*k+1)*2^(2*k)). 1
 1, 1, 5, 9, 3, 1, 5, 1, 5, 6, 5, 8, 4, 1, 2, 4, 4, 8, 8, 1, 0, 7, 2, 0, 0, 3, 1, 3, 7, 5, 7, 7, 4, 1, 3, 7, 0, 3, 3, 3, 4, 0, 7, 9, 8, 4, 2, 0, 3, 3, 1, 6, 5, 5, 3, 1, 4, 9, 1, 2, 7, 7, 4, 6, 0, 8, 5, 2, 5, 8, 9, 5, 1, 9, 2, 0, 3, 0, 0, 4, 4, 6, 6, 8, 9, 1, 6, 2, 6, 3, 7, 0, 4, 6, 7, 1, 9, 3, 8, 0, 2, 7, 3, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 H. M. Srivastava and Junesang Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Insights, 2011, pp. 272 and 314. Eric Weisstein's MathWorld, Riemann Zeta Function. Wikipedia, Riemann Zeta Function. FORMULA Equals log(2) - EulerGamma. Equals Sum_{k>=1} (zeta(2*k+1)-1)/(k+1). - Amiram Eldar, May 24 2021 Equals Sum_{k>=1} psi(k)/2^k, where psi(x) is the digamma function. - Amiram Eldar, Sep 12 2022 EXAMPLE 0.1159315156584124488107200313757741370333407984203316553149... MATHEMATICA RealDigits[Log[2] - EulerGamma, 10, 105] // First PROG (PARI) default(realprecision, 100); log(2) - Euler \\ G. C. Greubel, Sep 06 2018 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Log(2) - EulerGamma(R); // G. C. Greubel, Sep 06 2018 CROSSREFS Cf. A001620, A002162, A094642 (= log(Pi/2) = Sum_{k>=2} zeta(2*k)/(k*2^(2*k))). Sequence in context: A111698 A216755 A344149 * A021948 A306883 A333155 Adjacent sequences: A255678 A255679 A255680 * A255682 A255683 A255684 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Apr 13 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 18:21 EDT 2023. Contains 365792 sequences. (Running on oeis4.)