login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290968
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) + a(n-5), with a(0)=a(1)=a(2)=1, a(3)=-1 and a(4)=1.
1
1, 1, 1, -1, 1, 1, 5, 5, 9, 11, 21, 33, 57, 89, 145, 231, 377, 609, 989, 1597, 2585, 4179, 6765, 10945, 17713, 28657, 46369, 75023, 121393, 196417, 317813, 514229, 832041, 1346267, 2178309, 3524577, 5702889, 9227465, 14930353, 24157815
OFFSET
0,7
COMMENTS
The array of successive differences begins:
1, 1, 1, -1, 1, 1, 5, 5, 9, 11, 21, 33, 57, ...
0, 0, -2, 2, 0, 4, 0, 4, 2, 10, 12, 24, 32, ...
0, -2, 4, -2, 4, -4, 4, -2, 8, 2, 12, 8, 24, ...
-2, 6, -6, 6, -8, 8, -6, 10, -6, 10, -4, 16, 6, ...
8, -12, 12, -14, 16, -14, 16, -16, 16, -14, 20, -10, 24, ...
...
First row is a(n) = 2*A141325(n) - A141325(n+1).
Main diagonal is A099430(n).
The first upper subdiagonal, 1, -2, -2, -8, -14, ..., has -3*A078008(n) as first differences.
The second upper subdiagonal is A000079(n) = 2^n.
a(n) is related to Fibonacci numbers a(n) = A000045(n-2) + period 6: repeat [2, 0, 1, -2, 0, -1].
FORMULA
G.f.: (1-x^2-2*x^3+x^4)/((1+x)*(1-x+x^2)*(1-x-x^2)).
a(n) ~ phi^(n-2)/sqrt(5), where phi is the golden ratio.
a(n) = (1/2 + sqrt(5)/2)^n*(3*sqrt(5)/10-1/2) - (-1/2 + sqrt(5)/2)^n*(3*sqrt(5)/10 + 1/2)*(-1)^n + 2*sqrt(3)*sin(Pi*(n/3 + 1/3))/3 + (-1)^n. - Eric Simon Jacob, Jul 11 2024
MATHEMATICA
LinearRecurrence[{1, 1, -1, 1, 1}, {1, 1, 1, -1, 1}, 40]
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2))) \\ G. C. Greubel, Jun 11 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2)) )); // G. C. Greubel, Jun 11 2019
(Sage) ((1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 11 2019
CROSSREFS
KEYWORD
easy,sign
AUTHOR
STATUS
approved