login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) + a(n-5), with a(0)=a(1)=a(2)=1, a(3)=-1 and a(4)=1.
1

%I #21 Jul 11 2024 07:50:30

%S 1,1,1,-1,1,1,5,5,9,11,21,33,57,89,145,231,377,609,989,1597,2585,4179,

%T 6765,10945,17713,28657,46369,75023,121393,196417,317813,514229,

%U 832041,1346267,2178309,3524577,5702889,9227465,14930353,24157815

%N a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) + a(n-5), with a(0)=a(1)=a(2)=1, a(3)=-1 and a(4)=1.

%C The array of successive differences begins:

%C 1, 1, 1, -1, 1, 1, 5, 5, 9, 11, 21, 33, 57, ...

%C 0, 0, -2, 2, 0, 4, 0, 4, 2, 10, 12, 24, 32, ...

%C 0, -2, 4, -2, 4, -4, 4, -2, 8, 2, 12, 8, 24, ...

%C -2, 6, -6, 6, -8, 8, -6, 10, -6, 10, -4, 16, 6, ...

%C 8, -12, 12, -14, 16, -14, 16, -16, 16, -14, 20, -10, 24, ...

%C ...

%C First row is a(n) = 2*A141325(n) - A141325(n+1).

%C Main diagonal is A099430(n).

%C The first upper subdiagonal, 1, -2, -2, -8, -14, ..., has -3*A078008(n) as first differences.

%C The second upper subdiagonal is A000079(n) = 2^n.

%C a(n) is related to Fibonacci numbers a(n) = A000045(n-2) + period 6: repeat [2, 0, 1, -2, 0, -1].

%H G. C. Greubel, <a href="/A290968/b290968.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,1).

%F G.f.: (1-x^2-2*x^3+x^4)/((1+x)*(1-x+x^2)*(1-x-x^2)).

%F a(n) ~ phi^(n-2)/sqrt(5), where phi is the golden ratio.

%F a(n) = (1/2 + sqrt(5)/2)^n*(3*sqrt(5)/10-1/2) - (-1/2 + sqrt(5)/2)^n*(3*sqrt(5)/10 + 1/2)*(-1)^n + 2*sqrt(3)*sin(Pi*(n/3 + 1/3))/3 + (-1)^n. - _Eric Simon Jacob_, Jul 11 2024

%t LinearRecurrence[{1,1,-1,1,1}, {1,1,1,-1,1}, 40]

%o (PARI) my(x='x+O('x^40)); Vec((1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2))) \\ _G. C. Greubel_, Jun 11 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2)) )); // _G. C. Greubel_, Jun 11 2019

%o (Sage) ((1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2))).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 11 2019

%Y Cf. A000045, A078008, A099430, A131531, A141325.

%K easy,sign

%O 0,7

%A _Jean-François Alcover_ and _Paul Curtz_, Aug 16 2017