login
A109223
Number triangle related to the Fibonacci polynomials.
3
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 6, 5, 7, 1, 1, 1, 6, 15, 7, 9, 1, 1, 1, 10, 15, 28, 9, 11, 1, 1, 1, 10, 35, 28, 45, 11, 13, 1, 1, 1, 15, 35, 84, 45, 66, 13, 15, 1, 1, 1, 15, 70, 84, 165, 66, 91, 15, 17, 1, 1, 1, 21, 70, 210, 165, 286, 91, 120, 17, 19, 1, 1, 1, 21, 126, 210
OFFSET
0,8
COMMENTS
Riordan array (1/(1-x), x/(1-x^2)^2). Row-reversal of number triangle A109221. Diagonals form a repeated version of A054142. Row sums are A109222. Diagonal sums are A094967.
FORMULA
T(n,k) = binomial(floor((n+k)/2)+k, 2*k)
T(n,k) = A065941(n+k,n-k). - Johannes W. Meijer, Aug 14 2011
EXAMPLE
Rows begin
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 3, 5, 1, 1;
1, 6, 5, 7, 1, 1;
1, 6, 15, 7, 9, 1, 1;
MAPLE
A109223 := proc(n, k): binomial(floor((n+k)/2)+k, 2*k) end: seq(seq(A109223(n, k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 14 2011
CROSSREFS
Sequence in context: A016733 A060234 A131270 * A263009 A283983 A016466
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jun 22 2005
STATUS
approved