login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131270
Triangle T(n,k) = 2*A046854(n,k) - 1, read by rows.
3
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 5, 1, 1, 1, 5, 5, 7, 1, 1, 1, 5, 11, 7, 9, 1, 1, 1, 7, 11, 19, 9, 11, 1, 1, 1, 7, 19, 19, 29, 11, 13, 1, 1, 1, 9, 19, 39, 29, 41, 13, 15, 1, 1, 1, 9, 29, 39, 69, 41, 55, 15, 17, 1, 1, 1, 11, 29, 69, 69, 111, 55, 71, 17, 19, 1, 1
OFFSET
0,8
COMMENTS
Row sums = A131269: {1, 2, 3, 6, 11, 20, 35, 60, 101, 168, ...}.
FORMULA
T(n,k) = 2*A046854(n,k) - 1.
Reversed triangle of A131268.
EXAMPLE
First few rows of the triangle:
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 3, 5, 1, 1;
1, 5, 5, 7, 1, 1;
1, 5, 11, 7, 9, 1, 1;
1, 7, 11, 19, 9, 11, 1, 1;
...
MATHEMATICA
Table[2*Binomial[Floor[(n+k)/2], k] - 1, {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 09 2019 *)
PROG
(PARI) T(n, k) = 2*binomial((n+k)\2, k)-1; \\ G. C. Greubel, Jul 09 2019
(Magma) [[2*Binomial(Floor((n+k)/2), k) -1: k in [0..n]]:n in [0..12]]; // G. C. Greubel, Jul 09 2019
(Sage) [[2*binomial(floor((n+k)/2), k) -1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 09 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 23 2007
STATUS
approved