The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131269 a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) with n>3, a(0)=1, a(1)=2, a(2)=3, a(3)=6. 7
 1, 2, 3, 6, 11, 20, 35, 60, 101, 168, 277, 454, 741, 1206, 1959, 3178, 5151, 8344, 13511, 21872, 35401, 57292, 92713, 150026, 242761, 392810, 635595, 1028430, 1664051, 2692508, 4356587, 7049124, 11405741, 18454896, 29860669, 48315598, 78176301, 126491934 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of triangles A131268 and A131270. a(n)/a(n-1) tends to phi (A001622). LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1). FORMULA a(n) = a(n-2) + a(n-1) + n - 2 with n>1, a(0)=1, a(1)=2. - Alex Ratushnyak, May 02 2012 From Bruno Berselli, May 03 2012: (Start) G.f.: (1-x-x^2+2*x^3)/((1-x-x^2)*(1-x)^2). - Bruno Berselli, May 03 2012 a(n) = A001595(n+1) - n = A006355(n+3) - n - 1 = ((1+sqrt(5))^(n+2) - (1-sqrt(5))^(n+2))/(2^(n+1)*sqrt(5))-n-1. (End) EXAMPLE a(4) = 11 = sum of row 4 terms of triangle A131268: ((1 + 1 + 5 + 3 + 1), or the reversed terms of triangle A131270, row 4. MATHEMATICA LinearRecurrence[{3, -2, -1, 1}, {1, 2, 3, 6}, 41] (* Bruno Berselli, May 03 2012 *) Table[2*Fibonacci[n+2]-n-1, {n, 0, 40}] (* G. C. Greubel, Jul 09 2019 *) PROG (Python) prpr = 1 prev = 2 for n in range(2, 99): current = prpr + prev + n - 2 print(prpr, end=', ') prpr = prev prev = current # from Alex Ratushnyak, May 02 2012 # Contribution from Bruno Berselli, May 03 2012: (Start) (PARI) Vec((1-x-x^2+2*x^3)/((1-x-x^2)*(1-x)^2)+O(x^40)) (Magma) /* By the first comment: */ [&+[2*Binomial(n-Floor((k+1)/2), Floor(k/2))-1: k in [0..n]]: n in [0..40]]; (Maxima) makelist(expand(((1+sqrt(5))^(n+2)-(1-sqrt(5))^(n+2) )/(2^(n+1)*sqrt(5))-n-1), n, 0, 40); (End) (PARI) vector(40, n, n--; 2*fibonacci(n+2)-n-1) \\ G. C. Greubel, Jul 09 2019 (Magma) [2*Fibonacci(n+2)-n-1: n in [0..40]]; // G. C. Greubel, Jul 09 2019 (Sage) [2*fibonacci(n+2)-n-1 for n in (0..40)] # G. C. Greubel, Jul 09 2019 (GAP) List([0..40], n-> 2*Fibonacci(n+2)-n-1) # G. C. Greubel, Jul 09 2019 CROSSREFS Cf. A000045, A001622, A065941, A131268, A131270. Cf. A001595 (first differences). Sequence in context: A285553 A242842 A327665 * A358027 A090167 A352500 Adjacent sequences: A131266 A131267 A131268 * A131270 A131271 A131272 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Jun 23 2007 EXTENSIONS Better definition and more terms from Bruno Berselli, May 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 15:59 EDT 2023. Contains 363019 sequences. (Running on oeis4.)