login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327665
Fibonacci with binary selection.
1
0, 1, 1, 2, 3, 6, 11, 20, 34, 56, 121, 244, 481, 938, 1832, 3540, 6757, 12708, 23410, 42328, 73764, 122889, 275122, 408967, 832560, 1580364, 2834653, 5044480, 8652446, 13975133, 29832886, 58354102, 112803422, 215061934, 401711254, 737267883, 1313954863, 2259026414
OFFSET
0,4
FORMULA
a(n) = a(n-1) + Sum_{i=0..e(a(n-1))} b(a(n-1), e(a(n-1))-i)*a(n-i-2) where b(k, i) is the i-th bit in the binary expansion of k, with b(k, 0) being the low order bit of k, and e(k) = floor(log_2(k)). The initial terms are a(0) = 0, a(1) = 1. [edited by Michel Marcus, Sep 28 2019 and Michael S. Branicky, Jan 19 2021]
MATHEMATICA
e[n_] := Floor[Log2[n]]; a[0] = 0; a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] + Sum[BitGet[a[n - 1], em - i] * a[n - 2 - i], {i, 0, (em = e[a[n - 1]])}]; Array[a, 38, 0] (* Amiram Eldar, Sep 28 2019 *)
PROG
(PARI) lista(nn) = {my(va = vector(nn)); va[1] = 0; va[2] = 1; va[3] = 1; for (n=4, nn, my(b = binary(va[n-1])); va[n] = va[n-1] + sum(k=1, #b, b[k]*va[n-k-1]); ); va; } \\ Michel Marcus, Sep 28 2019
(Python)
def aupton(nn):
alst = [0, 1, 1]
for n in range(3, nn+1):
b = list(map(int, bin(alst[n-1])[2:]))
alst.append(alst[n-1] + sum(bi*alst[n-i-2] for i, bi in enumerate(b)))
return alst[:nn+1]
print(aupton(37)) # Michael S. Branicky, Jan 19 2021
CROSSREFS
Sequence in context: A191629 A285553 A242842 * A131269 A358027 A090167
KEYWORD
nonn,base
AUTHOR
Hilarie Orman, Sep 21 2019
STATUS
approved