login
A283983
Square root of the largest square dividing prime factorization representation of the n-th Stern polynomial: a(n) = A000188(A260443(n)).
5
1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 5, 3, 1, 15, 1, 1, 1, 3, 5, 15, 7, 45, 5, 15, 1, 15, 35, 15, 1, 105, 1, 1, 1, 3, 5, 105, 7, 225, 35, 525, 11, 1575, 175, 1125, 7, 1575, 35, 105, 1, 105, 35, 525, 77, 1575, 35, 525, 1, 105, 385, 105, 1, 1155, 1, 1, 1, 3, 5, 1155, 7, 1575, 385, 3675, 11, 7875, 1225, 275625, 77, 55125, 2695, 5775, 13, 17325, 13475, 275625, 539
OFFSET
0,6
LINKS
FORMULA
a(n) = A000188(A260443(n)).
a(n) = A000196(A283989(n)).
Other identities. For all n >= 0:
a(2n) = A003961(a(n)).
A001222(a(n)) = A284264(n).
MATHEMATICA
A003961[p_?PrimeQ] := A003961[p] = Prime[ PrimePi[p] + 1]; A003961[1] = 1; A003961[n_] := A003961[n] = Times @@ ( A003961[First[#]] ^ Last[#] & ) /@ FactorInteger[n] (* after Jean-François Alcover, Dec 01 2011 *); A260443[n_]:= If[n<2, n + 1, If[EvenQ[n], A003961[A260443[n/2]], A260443[(n - 1)/2] * A260443[(n + 1)/2]]]; A000188[n_]:= Sum[Boole[Mod[i^2, n] == 0], {i, n}]; Table[A000188[A260443[n]], {n, 0, 50}] (* Indranil Ghosh, Mar 28 2017 *)
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013.
A000188(n) = core(n, 1)[2]; \\ This function from Michel Marcus, Feb 27 2013
(Scheme)
(define (A283983 n) (A000188 (A260443 n)))
(define (A283983 n) (A000196 (A283989 n)))
CROSSREFS
Cf. A023758 (positions of ones).
Sequence in context: A131270 A109223 A263009 * A016466 A293669 A055210
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 25 2017
STATUS
approved