login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283985
Sums of distinct terms of A143293: a(n) = Sum_{k>=0} A030308(n,k)*A143293(k).
5
0, 1, 3, 4, 9, 10, 12, 13, 39, 40, 42, 43, 48, 49, 51, 52, 249, 250, 252, 253, 258, 259, 261, 262, 288, 289, 291, 292, 297, 298, 300, 301, 2559, 2560, 2562, 2563, 2568, 2569, 2571, 2572, 2598, 2599, 2601, 2602, 2607, 2608, 2610, 2611, 2808, 2809, 2811, 2812, 2817, 2818, 2820, 2821, 2847, 2848, 2850, 2851, 2856, 2857, 2859, 2860, 32589
OFFSET
0,3
COMMENTS
Indexing starts from zero, with a(0) = 0.
FORMULA
a(n) = Sum_{k>=0} A030308(n,k)*A143293(k).
a(n) = A276085(A283477(n)).
Other identities. For all n >= 0:
a(2^n) = A143293(n).
PROG
(PARI)
A143293(n) = { if(n==0, return(1)); my(P=1, s=1); forprime(p=2, prime(n), s+=P*=p); s; }; \\ This function from Charles R Greathouse IV, Feb 05 2014
A030308(n, k) = bittest(n, k);
A283985(n) = sum(i=0, (#binary(n)-1), A030308(n, i)*A143293(i));
(Scheme) (define (A283985 n) (A276085 (A283477 n)))
(Python)
from sympy import primorial, primepi, prime, primerange, factorint
from operator import mul
from functools import reduce
def a002110(n): return 1 if n<1 else primorial(n)
def a276085(n):
f=factorint(n)
return sum([f[i]*a002110(primepi(i) - 1) for i in f])
def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
def a108951(n):
f = factorint(n)
return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # after Chai Wah Wu
def a(n): return a276085(a108951(a019565(n)))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 19 2017
STATUS
approved