login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283988
a(n) = A002487(n-1) AND A002487(n), where AND is bitwise-and (A004198).
7
0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 4, 4, 3, 0, 0, 5, 2, 2, 5, 0, 0, 3, 4, 4, 1, 0, 4, 1, 0, 0, 3, 2, 2, 3, 8, 8, 5, 4, 4, 1, 0, 0, 1, 4, 4, 5, 8, 8, 3, 2, 2, 3, 0, 0, 1, 4, 0, 1, 6, 2, 1, 4, 8, 9, 4, 4, 11, 2, 2, 1, 0, 8, 1, 2, 10, 3, 0, 0, 5, 0, 0, 1, 0, 0, 3, 0, 0, 9, 2, 2, 9, 0, 0, 3, 0, 0, 1, 0, 0, 5, 0, 0, 3, 10, 2, 1, 8, 0, 1, 2, 2, 11, 4
OFFSET
1,6
FORMULA
a(n) = A002487(n-1) AND A002487(n), where AND is bitwise-and (A004198).
a(n) = A283986(n) - A283987(n).
a(n) = A007306(n) - A283986(n) = (A007306(n) - A283987(n))/2.
a(n) = A283978((2*n)-1).
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := If[EvenQ@ n, a[n/2], a[(n - 1)/2] + a[(n + 1)/2]]; Table[BitAnd[a[n - 1], a@ n], {n, 120}] (* Michael De Vlieger, Mar 22 2017 *)
PROG
(Scheme) (define (A283988 n) (A004198bi (A002487 (- n 1)) (A002487 n))) ;; Where A004198bi implements bitwise-AND (A004198).
(PARI) A(n) = if(n<2, n, if(n%2, A(n\2) + A((n + 1)/2), A(n/2)));
for(n=1, 120, print1(bitand(A(n - 1), A(n)), ", ")) \\ Indranil Ghosh, Mar 23 2017
(Python)
from functools import reduce
def A283988(n): return sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(n)[-1:2:-1], (1, 0)))&sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(n-1)[-1:2:-1], (1, 0))) if n>1 else 0 # Chai Wah Wu, May 05 2023
CROSSREFS
Odd bisection of A283978.
Cf. A283973 (positions of zeros), A283974 (nonzeros).
Sequence in context: A287320 A210502 A350797 * A276204 A365573 A370278
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Mar 21 2017
STATUS
approved