login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283986
a(n) = A002487(n-1) OR A002487(n), where OR is bitwise-or (A003986).
7
1, 1, 3, 3, 3, 3, 3, 3, 5, 7, 7, 7, 7, 7, 7, 5, 5, 5, 7, 7, 11, 13, 7, 7, 7, 7, 13, 11, 7, 7, 5, 5, 7, 7, 13, 13, 15, 15, 15, 11, 11, 11, 13, 13, 13, 15, 15, 11, 11, 15, 15, 13, 13, 13, 11, 11, 11, 15, 15, 15, 13, 13, 7, 7, 7, 7, 15, 15, 15, 15, 13, 13, 15, 15, 27, 23, 23, 27, 15, 15, 15, 15, 27, 27, 29, 29, 31, 23, 21, 29, 31, 23, 23, 25, 11, 11, 11, 11, 25
OFFSET
1,3
FORMULA
a(n) = A002487(n-1) OR A002487(n), where OR is bitwise-or (A003986).
a(n) = A283987(n) + A283988(n).
a(n) = A007306(n) - A283988(n).
a(n) = A283976((2*n)-1).
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := If[EvenQ@ n, a[n/2], a[(n - 1)/2] + a[(n + 1)/2]]; Table[BitOr[a[n - 1], a@ n], {n, 120}] (* Michael De Vlieger, Mar 22 2017 *)
PROG
(Scheme) (define (A283986 n) (A003986bi (A002487 (- n 1)) (A002487 n))) ;; Where A003986bi implements bitwise-OR (A003986).
(PARI) A(n) = if(n<2, n, if(n%2, A(n\2) + A((n + 1)/2), A(n/2)));
for(n=1, 101, print1(bitor(A(n - 1), A(n))", ")) \\ Indranil Ghosh, Mar 23 2017
(Python)
from functools import reduce
def A283986(n): return sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(n)[-1:2:-1], (1, 0)))|sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(n-1)[-1:2:-1], (1, 0))) # Chai Wah Wu, May 05 2023
CROSSREFS
Odd bisection of A283976.
Cf. A283973 (positions where coincides with A007306, equally, with A283987).
Sequence in context: A178832 A111233 A210746 * A343515 A351836 A105159
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Mar 21 2017
STATUS
approved