login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343515
a(n) is the number of real solutions to the equation sin(x) = x/n.
0
1, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, 15, 15, 15, 15, 15, 15, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 27, 27, 27, 27, 27, 27, 31, 31, 31, 31, 31, 31, 35, 35, 35, 35, 35, 35, 35, 39, 39, 39, 39, 39, 39, 43, 43, 43, 43, 43
OFFSET
1,2
COMMENTS
All terms are odd.
All terms are congruent to 3 modulo 4 after the first term. Proof: define sin(x)/x to be 1 at x = 0. If a(n) == 1 (mod 4), then the horizontal line y = 1/n is tangent to the curve y = sin(x)/x at (x_n, sin(x_n)/x_n) for some x_n >= 0. We have tan(x_n) = x_n and sin(x_n)/x_n = 1/n, so cos(x_n) = 1/n. By the Lindemann-Weierstrass theorem, we have either x_n = 0 or x_n must be transcendental (if x is a nonzero algebraic number, then exp(x) is transcendental). On the other hand, x_n = tan(x_n) = sqrt(n^2-1) is algebraic, so the only possibility is n = 1. - Jianing Song, Jul 13 2021
FORMULA
a(n) ~ 4*(floor((n-Pi/2)/(2*Pi))+1)-1.
For n > 1, a(n) = 4*(floor((n-Pi/2)/(2*Pi))+1)-1 + r(n), where r(n) is an error term defined as follows: let E be the system of equations given by cos(sqrt(n^2-1)) = 1/n and sin(sqrt(n^2-1)) = sqrt(n^2-1)/n; r(n) = 4 if the closest solution of E from the left to Pi/2 + 2*Pi*(floor((n-Pi/2)/2*Pi)+1) is smaller than n; r(n) = 0 otherwise.
From Jianing Song, Jul 13 2021: (Start)
Define x_k to be root of tan(x) = x in [k*Pi, (k+1)*Pi), k >= 0. For n > 1, if sec(x_(2*k)) < n < sec(x_(2*k+2)) (or equivalently, x_(2*k) < sqrt(n^2-1) < x_(2*k+2)), then a(n) = 4*k + 3.
For n >= 2, a(n+1) - a(n) is either 0 or 4. a(n+1) - a(n) = 4 if n is of the form floor(sec(x_(2*k))) = floor(sqrt((x_(2*k))^2+1)) for some k > 0. (End)
EXAMPLE
a(3) = 3 because the equation sin(x) = x/3 has 3 real solutions: {-2.27886..., 0, 2.27886...}.
MATHEMATICA
Join[{1}, Table[CountRoots[n*Sin[x] - x, {x, -n, n}], {n, 2, 100}]] (* Vaclav Kotesovec, Jun 25 2021 *)
CROSSREFS
Sequence in context: A111233 A210746 A283986 * A351836 A105159 A365458
KEYWORD
nonn
AUTHOR
Pablo Hueso Merino, Apr 17 2021
STATUS
approved