login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283484
Odd bisection of A283983; square root of the largest square dividing A277324.
5
1, 1, 3, 1, 3, 3, 15, 1, 3, 15, 45, 15, 15, 15, 105, 1, 3, 105, 225, 525, 1575, 1125, 1575, 105, 105, 525, 1575, 525, 105, 105, 1155, 1, 3, 1155, 1575, 3675, 7875, 275625, 55125, 5775, 17325, 275625, 4134375, 55125, 55125, 275625, 121275, 1155, 1155, 40425, 385875, 202125, 606375, 1929375, 606375, 5775, 8085, 40425, 121275, 40425, 1155, 1155, 15015, 1, 3
OFFSET
0,3
LINKS
FORMULA
a(n) = A283983((2*n)+1).
a(n) = A000188(A277324(n)).
A001222(a(n)) = A284265(n).
MATHEMATICA
A003961[p_?PrimeQ] := A003961[p] = Prime[ PrimePi[p] + 1]; A003961[1] = 1; A003961[n_] := A003961[n] = Times @@ ( A003961[First[#]] ^ Last[#] & ) /@ FactorInteger[n] (* after Jean-François Alcover, Dec 01 2011 *); A260443[n_]:= If[n<2, n + 1, If[EvenQ[n], A003961[A260443[n/2]], A260443[(n - 1)/2] * A260443[(n + 1)/2]]]; A275812[n_]:= PrimeOmega[n] - If[n<2, 0, Count[Transpose[FactorInteger[n]][[2]], 1]]; A277324[n_]:=A260443[2n + 1]; A000188[n_]:= Sum[Boole[Mod[i^2, n] == 0], {i, n}]; Table[A000188[A277324[n]], {n, 0, 50}] (* Indranil Ghosh, Mar 28 2017 *)
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013.
A277324(n) = A260443((2*n)+1);
A000188(n) = core(n, 1)[2]; \\ This function from Michel Marcus, Feb 27 2013
(Scheme)
(define (A283484 n) (A000188 (A277324 n)))
(define (A283484 n) (A283983 (+ n n 1)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 25 2017
STATUS
approved