login
A065938
Position of sqrt(n) in the mapping N2QuQR1 given in A065936.
4
1, 6, 14, 7, 120, 248, 16160, 1019, 127, 32640, 65408, 16373, 8386032, 4194056, 4194239, 32767, 2147450880, 4294934528, 4611672824287851743, 268435343, 8796091842564, 1125899889968159, 70368744112268, 70368744161279
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Continued Fraction.
MAPLE
[seq(frac2position_in_0_1_SB_tree(sqrt_n_confrac2binfrac(j)), j=1..40)];
sqrt_n_confrac2binfrac := proc(n) local c, t; c := CONFRACS_FOR_sqrt_N[n]; t := `if`((1 = nops(c)), [], `if`((0 = (nops(c) mod 2)), [op(c[2..nops(c)]), op(c[2..nops(c)])], c[2..nops(c)])); RETURN( (((2^c[1])-1) + `if`(1 = nops(c), 0, (runcounts2binexp0(t) / ((2^(convert(t, `+`)))-1)))) / (2^c[1])); end;
runcounts2binexp0 := proc(c) local i, e, n; n := 0; for i from 0 to nops(c)-1 do e := c[i+1]; n := ((2^e)*n) + ((i mod 2)*((2^e)-1)); od; RETURN(n); end;
CONFRACS_FOR_sqrt_N := [[1], [1, 2], [1, 1, 2], [2], [2, 4], [2, 2, 4], [2, 1, 1, 1, 4], [2, 1, 4], [3], [3, 6], etc., adapted from Weisstein's encyclopedia entry for Continued Fractions]
CROSSREFS
Cf. A003285. N2QuQR1(a[n])^2 = n, see A065936. For frac2position_in_0_1_SB_tree see A065658. Cf. also A065939.
Sequence in context: A201449 A205300 A377291 * A131902 A265029 A329065
KEYWORD
nonn,changed
AUTHOR
Antti Karttunen, Dec 07 2001
STATUS
approved